2024知到答案 机器学习基础(湖北商贸学院) 最新智慧树满分章节测试答案
第一章 单元测试
1、单选题:
机器学习是一种:( )
选项:
A:人工智能子领域
B:算法库
C:编程语言
D:数据分析工具
答案: 【人工智能子领域】
2、单选题:
以下哪种算法是无监督学习算法?( )
选项:
A:朴素贝叶斯
B:K均值聚类
C:支持向量机
D:决策树
答案: 【K均值聚类】
3、单选题:
在机器学习中,过拟合是指:( )
选项:
A:模型过于简单
B:模型无法适应新数据
C:模型过于复杂
D:模型的精度较低
答案: 【模型过于复杂】
4、判断题:
监督学习中,分类问题的输出是离散值,而回归问题的输出是连续值。( )
选项:
A:错
B:对
答案: 【对】
5、判断题:
机器学习中的特征工程是指对原始数据进行预处理。( )
选项:
A:错
B:对
答案: 【对】
第二章 单元测试
1、判断题:
训练一个机器学习模型往往需要对大量的参数进行反复调试或者搜索,这一过程称为调参。其中在训练之前调整设置的参数称为超参数。( )
选项:
A:错
B:对
答案: 【对】
2、判断题:
线性回归的目标是求解w和b,使得f(x)和y尽可能接近。求解线性回归模型的基本方法是最小二乘法。( )
选项:
A:对
B:错
答案: 【对】
3、判断题:
根据模型预测输出的连续性,可以将机器学习算法适配的问题划分为分类问题和线性问题。( )
选项:
A:对
B:错
答案: 【错】
4、判断题:
如果两个变量相关,那么它们一定是线性关系。( )
选项:
A:对
B:错
答案: 【错】
5、单选题:
以下( )变量之间存在线性回归关系。
选项:
A:儿子的身高与父亲的身高
B:学生的性别与他的成绩
C:正三角形的边长与周长
D:正方形的边长与面积
答案: 【正三角形的边长与周长】
6、单选题:
回归问题和分类问题的区别是( )。
选项:
A:回归问题输出值是连续的,分类问题输出值是离散的
B:回归问题输出值是离散的,分类问题输出值是连续的
C:回归问题与分类问题在输入属性值上要求不同
D:回归问题有标签,分类问题没有
答案: 【回归问题输出值是连续的,分类问题输出值是离散的】
7、单选题:
以下说法错误的是( )。
选项:
A:残差是预测值与真实值之间的差值
B:正则项的目的是为了避免模型过拟合
C:损失函数越小,模型训练得一定越好
D:最小二乘法不需要选择学习率
答案: 【损失函数越小,模型训练得一定越好】
8、单选题:
以下( )方法不能用于处理欠拟合。
选项:
A:增加模型复杂度
B:增大正则化系数
C:对特征进行变换,使用组合特征或高维特征
D:增加新的特征
答案: 【增大正则化系数】
9、多选题:
以下( )是使用数据规范化(特殊缩放)的原因。
选项:
A:它不能防止梯度下降陷入局部最优
B:它防止矩阵XTX不可逆(奇异/退化)
C:它通过减少迭代次数来获得一个好的解,从而加快了梯度下降的速度
D:它通过降低梯度下降的每次迭代的计算成本来加速梯度下降
答案: 【它不能防止梯度下降陷入局部最优;
它通过减少迭代次数来获得一个好的解,从而加快了梯度下降的速度;
它通过降低梯度下降的每次迭代的计算成本来加速梯度下降】
10、多选题:
线性回归中,我们可以使用最小二乘法来求解系数,下列关于最小二乘说法正确的是( )。
选项:
A:当特征数量很多的时候,运算速度会很慢
B:不需要迭代训练
C:只适用于线性模型,不适合逻辑回归模型等其他模型
D:不需要选择学习率
答案: 【当特征数量很多的时候,运算速度会很慢;
不需要迭代训练;
只适用于线性模型,不适合逻辑回归模型等其他模型;
不需要选择学习率】